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The Blunt-Leading-Edge Problem in Hypersonic Flow

Haxuro OgucHr*
Universily of Tokyo, Komaba, Meguro-ku, Tokyo

The present paper is mainly concerned with the hypersonic flow over a flat plate with a
blunt nose. The analysis is based on the flow model in which the flow field behind the shock
wave may be divided into two regions: the inviscid-hypersonic-flow region and the entropy
layer, across which the pressure has no appreciable change. The equations for the entropy
layer can be reduced to those of the usual boundary-layer problem with the exception that
the outer edge of the entropy layer, as well as the pressure remain unknown. These un-
knowns are determined so as to approximately match the entropy-layer solution with the in-
viscid hypersonic solution in which the shock wave has the shape of the 2/3-power law of the
distance from the leading edge. The assumed flow model is shown to be valid over a restricted
range depending on the wall-to-stagnation temperature ratio and Re;/M Ve (where Re; is
the Reynolds number based on half the thickness of nose t, M the freestream Mach number,
and C the Chapman-Rubesin constant. Actual calculations have been carried out for the
case with typical values of Re;/M V€ and the wall-to-stagnation temperature ratio T,/T%.
The calculated values for both the surface pressure and heat-transfer rate are compared
with the experimental data. As regards surface pressure in particular, a satisfactory agree-
ment with the data is obtained. The validity of the assumptions upon which the present
analysis is based has been examined frem the numerical results, and the region of the validity
has been found to extend over a certain large range of the nondimensional distance from the
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leading edge.
Nomenclature yg = y-coordinate of the outer edge of entropy layer
ys = y-coordinate of shock wave

e = nondimensional shock-layer-thickness parameter . B = constant appearing in the asymptotic form of f as » is very
a* = the reference value of ¢ when the parameter Re,/M Ve large (f = » - B)

is very large v = specific-heat ratio
A = constant § = constant = (4/9)V/2Vy/(y + 1)K2—v/27)
C; = skin-riction coefficient (u0u/dy)w/( potix?/2) e = (v-1)/(v+ 1)
Cy = surface heat-transfer coeflicient (AT /39)w/potic( He ~— ¥ = stream function

H1.v) = Q/Pmuw(Hm-Hw) 0 = ?//yS
Cp = specific heat of the gas at constant pressure 6 = (H-H,)/(Hg—- H,) ~(H— H,)/(Hs — Hy)
C = Chapman-Rubesin constant u = viscosity coefficient of the gas
f = funct@on whose derivative 0f /09 is u/ug (= u/Us) A = thermal conductivity of the gas
F = functionof 6 (= y/ys) £&m = spatial variables defined by Eqs. (2.6a) and (2.6b),
h = specific enthalpy respectively
H = totalspecific enthalpy p = density
I = integral [§{(T'w/To) + [1 = (Tuw/T0)10 — fs?} dn X = hypersonic interaction parameter = M3V C/V Re,
k = nose-drag coefficient defined by Dy/gpus?-2f where

Dyis the nose drag bscri
K = valueof p/psas -0 Subseripts
M = freestream Mach number E = pertaining to the outer edge of entropy layer
p = pressure S = immediately behind the shock wave
Pr = Prandt! number 0 = freestream stagnation condition for the temperature
¢ = localsurface heat-transfer rate w = pertaining to the wall condition
Re, = Reynolds number = potet/M o o = pertaining to the freestream condition
Re; = Reynolds number = pu.t/Mo
t = half the thickness of the nose .
T — temperature I. Introduction
wo = velgclty ?ompongr}ts%)argllgl.to ttl[lex and yl?)l(es d : Q S is well known, the effects of the blunt leading edge as
&y = rectangular coordinates 1n directlons paraliel and normal, well as the boundary layer are important in hypersonic-

respectively, to the freestream direction, with the
origin at the nose shoulder
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flow problems of slender bodies. 1In order to investigate the
essential characteristics of these effects on the flow proper-
ties, we consider as a simple example a flat plate with a blunt
nose, placed in a freestream with no incidence.

In earlier stages of the investigation of the problem, in-
viscid flow analyses incorporated with blast-wave theory
brought many fruitful results.! However, such analyses
fail to clarify the details of the flow behavior in the region
close to the surface, because the hypersonic-small-disturbance
approximation on which the inviscid analysis is based is no
longer applicable in the neighborhood of the surface.t,” In-
deed, the transverse-momentum equation, with which the
hypersonic approximation is mainly concerned, degenerates
into the trivial equation 0p/0y = 0 (where p is the pressure
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and y the distance measured from the surface) in a region
close to the surface.

According to the inviscid analysis for hypersonic flow over
a plane flat plate with a blunt nose (for example, see Ref. 2),
the shock wave has a shape which is given by ys ~ x%3
(where z is the distance from the leading edge). The solution
which is identical with the constant-energy-blast-wave solu-
tion gives the vanishing density and infinitely high tempera-
ture on the surface. Such anomalous behaviors that the in-
viscid solution suggests are associated with the appearance of
a high-entropy layer near the surface. Most of the fluid
particles within the entropy layer may be considered to have
initially passed through a strong portion of the shock wave
near the leading edge. Actually both the temperature and
density should be finite on the surface as discussed in Ref.
8, so that such an apparent singularity of flow variables on
the surface should diminish in taking into account the vis-
cosity effect. In the absence of the viscosity the entropy
layer may be assumed to be generated mostly due to the drag
imparted by the blunt nose. Therefore the surface pressure
and/or shock-wave shape are well estimated from the blast-
wave analogy by an appropriate choice of the nose-drag co-
efficient without any detailed knowledge of the flow within
the entropy layer.? However, the determination of the nose-
drag coefficient which represents the nose-bluntness effect is
rather empirical. In order to estimate the effects of both
the nose bluntness and viscosity it should be required to make
clearer the flow behavior within the high-entropy layer.
Therefore, for the entropy layer the longitudinal-, as well as
transverse-momentum equations must be dealt with, in-
cluding the viscosity effect which in general plays a signif-
icant role in the region very close to the surface.

The combined effects of both the nose bluntness and bound-
ary layer on the characteristic aerodynamic quantities were
investigated by several authors,®~1? mainly on the basis of
experimental works. Recently a group at the Cornell Aero-
nautical Lab. presented an analysis to clarify considerably
the combined effects of both nose bluntness and boundary-
layer displacement, together with concurrent experimental
works.!3, 1 The analysis was carried out on the basis of a
flow model in which the flow field behind the shock wave is
composed of three regions: the infinitely thin hypersonic
region, the boundary layer, and an in-between inviscid en-
tropy layer. Such a theoretical approach could remedy the
break down of the inviseid hypersonic approximation within
the entropy layer, because the longitudinal-, as well as trans-
verse-momentum equations were taken into account. The
results concerning the heat transfer well explain the experi-
mental data. However, the analysis still involves some un-
certainty in the determination of the nose-drag coefficient,
as does any analysis incorporating the blast-wave analogy.

In the present paper we consider only the region which is
not so far downstream from the leading edge that the bound-
ary layer is confined within the entropy layer. We shall
examine a possibility to match consistently the solution for
the inviscid hypersonic region to the solution for the entropy
layer. It will be shown that such a matching can be done
approximately over a certain range whose extent depends on
both parameters M \/6Y / \/R_e, (where M is the freestream
Mach number, Re, the Reynolds number based on half a
thickness of the nose ¢, and € is the Chapman-Rubesin con-
stant) and T,/ T, the wall-to-stagnation temperature ratio.

II. The Solution for the Entropy Layer and the
Condition on the Quter Edge of the Entropy Layer

As will be justified in the following analysis, the shock wave
which is generated due to the nose bluntness is found to be
approximately in the form of ys ~ 2?3 For such a shock
wave the inviscid analysis'® 1 on the basis of the hypersonic-
small-disturbance theory® shows that there is a distinetly
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identifiable region next to the surface, where the pressure
gradient normal to the surface almost vanishes. The fluid
particles within such a region must have come through a
strong portion of the shock wave near the nose, so long as the
far downstream of the nose is excluded from our considera-
tions. We thus regard such a region as the entropy layer.
When the viscosity effect is introduced, the boundary layer
grows along the surface. If the boundary layer is confined
within the entropy layer where the normal pressure gradient
almost vanishes, the inviseid entropy layer is not identifiable
from the boundary layer. For such a case we assume the
flow model that the flow field behind the shock wave is made
up of two regions: the inviscid hypersonic flow region and
the entropy layer accompanying the boundary layer. Ap-
parently the region of validity of such a flow model depends
on the Reynolds number, the freestream Mach number, and
the wall condition.

Consistently with the pressure behavior near the surface
from the inviseid hypersonic solution, we may assume
throughout the entropy layer

ap/oy =0 (2.1)

The remaining basic equations are written within the thin-
shock-layer approximation’—viz.,

Opu 4 v _
ox dy
ou ou _ Op 0 Qu
P ox T oy or Oy l:,u by] (2.2)

oH oH o[ uoH AR
"“ax+””ay‘ay[may+“<1 Pr>uby]

Here the plate surface is the reference surface and coordinates
x, y are taken with z measured from the leading edge along
the plate and with y normal to it. The velocity components,
density, pressure, total enthalpy, and viscosity coefficient
are denoted respectively by u, v, p, p, H, and u.

If the outer edge of entropy layer is given by

Y = Yr
we have, from the continuity relation (Fig. 1),
sz oudY = pollot + Vg (2.3)

where Wz denotes the mass flow which enters the entropy
layer across the edge upstream from the point under con-
sideration. The left-hand side is the total mass flow across
the entropy layer. Throughout the present paper the sub-
seripts « and E stand for the quantities at the freestream
and entropy-layer edge, respectively.

At the wall the usual no-slip condition and constant-
temperature condition are applied, that is,

u=9v=0 H=H, aty =0 (2.4)

where the subscript w refers to the wall condition. On the
other hand, at the edge of entropy layer we require

u=ug, H = Hg aty = yr (2.5)

Keeping in mind that the edge of entropy layer is assumed
to provide a limit of the validity of hypersonic-small-disturb-
ance theory as one approaches the surface from the inviscid
region and that the boundary layer is assumed to be confined
within the entropy layer, we have approximately

Up = U,, Hg = H, aty = yr

For convenience, a transformation similar to that in Ref. 13

isintroduced, that is,
* pde
£ = c 2™
s fo Peo ¢ (2.63.)
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= \/Re‘ f 2 dy (2.6b)
0 .

of/on = u/ur =~ u/Ue (2.6¢)

H— H,)/(Ho, — Hs) (2.6d)

where
Re, = poteol/ phes

To simplify the calculation without loss of any essential
features, we assume a linear viscosity-temperature relation

B pe = C(T/Ts)

and a unit Prandtl number. Then the set of Egs. (2.2) be-

¢comes
2f71777l + ﬁnn - 2£Lfnf£v - féfnn] =
ap (* T, w R
{(2@ fo pdx> /p ][ o+ (1 - —O>e —f,,] 2.78)

2enn + fen - 25[][1195

where ¢ is the ratio of the freestream density to that across
the normal shock wave, that is

= -bD/xy+1D

With the strong-shock approximation, in the present paper
the magnitude of e is assumed small. The conditions, Egs.
(2.3), (2.4), and (2.5), are then transformed respectively into

— 0,1 =0 (2.7b)

f(n5) = V/Re/E (1 + ¥/ poad) (2.8a)
f=20offon =0, © = atn =0 (2.8b)
offon =1, 0 =1 at 7 = nge (2.8¢)

where 7z denotes the 5 coordinate of the outer edge of the
entropy layer.

It was pointed out by Lees" that for a hypersonic boundary
layer with a highly cooled wall the pressure gradient may be
small, on the basis of the fact that the term [T./To + (1 —
T/ To)© — f,2] is small throughout the layer. In addition,
as pointed out in Ref. 13, the factor is of the order of the den-
sity ratio e. Therefore, within the framework of the present
analysis, the pressure gradient is unimportant for the case
of small e.

As can be seen from Eq. (2.8a), f(ng) or ng becomes large
for large Reynolds number Re.. If the Reynolds number is
sufficiently large, so that 5z is relatively large compared to
one, say larger than about 4, we can set n — « instead of
1 = 7g in the condition Eq. (2.8¢); that is,

of/on =1, 6 =1 atn — = (2.9
For such cases the solution for the entropy layer becomes
approximately the same as that of the usual boundary layer.
The only difference from the usual boundary-layer problem is
in that the mass-flow condition, Eqgs. (2.3) or (2.8a), is im-
posed on the unknown location of the outer edge.t

The outer edge of the entropy layer as well as the surface
pressure distribution remain still unknown. By the use of
Eq. (2.6b) we have

= _—E: €t
ve JRet

where the subscript 0 denotes stagnation eonditions behind a

& ? dn (2.10)

t A similar approach was applied in Ref. 18 to the hypersonic
viscous-layer problem of a sharp-leading-edge flat plate.
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SHOCK WAVE
(Y = Ys)

INVISCID HYPERSONIC REGION
Uzl (g—?*O)

ENTROPY LAYER EDGE (Y=Y)

%

ZE‘__ [);:My l U# Uo ( 5 o)
R 2t I
M>> 1 ftat I

Fig. 1 Illustrative sketch of hypersonic flow over a blunt
flat plate

normal shock wave. With A the specific enthalpy, the defi-
nitions of f and © lead to

h T

whence

Po T po poI:Tw < T>
2 ey (- 2¥)e—
P TopE To+ Ty

T

It + ffﬁ] (2.11)
0

Applying the isentropic relation to a streamline penetrating
into the entropy layer across the edge, we obtain

Tr/Tos = (Pe/Pox)* Y/ (2.12)

where subscript Oz denotes the quantities just behind the
shock wave where the streamline concerned leaves the shock
(see Fig. 1). Since, from the strong-shock approximation,

Tox/To = Dos/Po
we have, from Eq. (2.12)

Tx _ por (p2\' 7"
T, = 20 \pos (2.13)

With Egs. (2.11) and (2.13), Eq. (2.10) is rewritten as
g R R T (B
v Re, < pr fO To + To ©
f,2 4 2 Doz ( > 1/} 2] dy (2.14)
n 2o \Pos n N .

As was shown before, with the neglect of the pressure term
the solution for the entropy layer reduces to the Blasius-type
solution, so long as the Reynolds number is sufficiently large
so that nz may be relatively large compared to one. We
then have

" fu2dn = f(ng) — 2fm(0)
IEfO"E[:;OJr <1—-%>e f,,] ~
Lo+ (-F)e -]
T,

9f,n(0) + 173 ¥ (for Pr = 1)
T,

(2.15)

R

Eq. (2.14) therefore becomes
- JE (p—"”) +\/ £ gDy
v Re, ‘ bz fns) Re, Pz

[I — 2f(0) %ﬁ (ﬁ)ul/v]
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By the use of the condition, Eq. (2.8a), we obtain from the
above equation

pos\'/” B
Y = \ — €t (]- + \I,E/pmumt) + = e X
PE Re,

€

. Pog [ Pr 1=
[I of,(0) 222 (p )

Evidently po; is a function of the stream function ¥z(=
Pulinlsy Where ys; is the y-coordinate of the point where the
concerning streamline leaves the shock wave). The strong-
shock-wave approximation gives

1/7] (2.16)

12
Pez . Ysg

P 1+ ys,”
For the shock wave represented in the form
ys/2t = alx/26)%3 (2.17)

the ratio of po, to the stagnation pressure py can be obtained
in terms of ¥z as follows:

Dos 1 - 1
Po 9 ys 9 ‘I’E
I+ 4 403 2 1+ g0 8a® poslial

The streamlines which reach the entropy-layer edge may
reasonably be considered to have initially passed through
the strong portion of the shock wave such that yg,”? = 1.
Therefore g/ potiet is at most of the order of one so that the
first term of Eq. (2.16) can be rewritten

9
pe L+ e g T O 9

/v 9 W&/ polict

Po _ B/ Pl
@) el (1 e Aew el Cl
because, as will be shown later from the results, 9/8va? is

close to one. For simplicity we shall focus our attention to
only the region where

9 \PE/pwumt
1> (1 87(13) v (2.18)

Though this relation may be expeeted to be valid for ys* > 1
or ¥/ pottt < 1 so far as the 9/8ve? is very close to one, a
more detailed examination on the validity will be given in the
succeeding sections. Furthermore the second term in the
second square bracket of Eq. (2.16) is assumed negligibly
small compared to the first term because, as was mentioned
before, the present analysis is based on the assumption that

Ur = Uo O (Pr/Po)! V7 K 1 (2.19)

With the foregoing approximations, Eqs. (2.18) and (2.19),
Eq. (2.16) becomes

1/v
PE PE
or with £ of Eq. (2.6a)

ye _ { po\Y7 \/ < >1—1/7
2t (m) [ + vy+1 X
1/2 -~
(f"l’l’@> My 1] (2.20)
Y PE 2t '\/Ret
The location of the entropy-layer edge can be determined
by the above relation independently of ¥z from the surface-

pressure distribution when the parameters involved are given.
As is easily shown, the second term on the right-hand side is

ATAA JOURNAL

identical with the displacement thickness of the boundary layer
which grows within the first term and is associated with the
displacement effect due to the nose bluntness. 1In the present
paper the entropy layer has been dealt with without separat-
ing the inviseid region and the boundary layer. Nevertheless
the entropy-layer edge has been found to be a linear combina-
tion of both displacement effects due to the inviscid entropy
layer and boundary layer, so far as the underlying assump-
tions are valid.

III. The Matching Procedure of the Entropy-
Layer Solution with the Inviscid Hypersonic
Solution

We shall now examine the solution for the hypersonic flow
ambient to the entropy layer. We tentatively assume the
shock-wave shape which is given by ys ~ z%3. For such a
shock wave the hypersonic-small-disturbance theory provides
the solution in terms of the similarity variable #; that is

0 = y/ys
The stream function ¥ defined by
V, = pU = ple, ¥V, = —pv
can be obtained in the form
¥ = ysF(6) 3.1

and then the pressure is given (for example, see Refs. 2, 15,
and 24) by

b4 vy — 1\

= = F'/F

ps <v + 1) /

According to the results, we have for small 6 or for the vicinity
of the surface

F(6) = Agy/(v—1 1+ 0(0(27—1)/(7—1))] (3.2a)

P _ K1+ 0@r—D/tr—1y) (3.2b)

Ps

where

- <v :Y!— 1>7 A (3.20)

The difference of p/ps from the constant value K is very small
over a region next to the surface, because it is of the order of
6%/, Indeed the numerical results show that the pressure
ratio p/ps is nearly constant over a distinctly identifiable
region next to the surface. We can therefore identify this
asymptotic value of the pressure with the pressure pz across
the entropy layer. With the strong-shock approximation,
therefore, the pressure pgis given by

Ps _ dys

We shall first examine the limiting case when Re; is suffi-
ciently large so that the boundary layer is negligibly thin.
The condition, Eq. (2.20), then reduces to

~ (po/pE)/ " € (3.4)

We note that a similar relation between yz and (pe/pz)l’”
has been found in Refs. 6 and 13, but with undetermined
multiplicative factor. The shock wave has been initially
assumed to be of the form

Ys/2t = a(z/20)%3

with a constant @. As will be seen below, in fact the shock
wave is obtained in the form

ys/2t = a(x)(x/2f)23
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That is, from Eq. (3.4) with da({z)/dxr < 1

3 2/(2++) ,(e ys)2/(2+7) <x>2(1—7)/3(2+7)
"= <wr<> 2ys 2

(3.5)

Based upon the local similarity concept, however we may
expect that the inviscid solution for the case of shock-wave
shape with a constant a can also be applied to the present
case so0 long as a is a very slowly varying function of x/2:.
Indeed a(x) above obtained indicates no appreciable change
over a large extent so long as the specific-heat ratio is close
to one. Moreover, a(zr) is approximately given by

. 3 \2/@+w <e ys>2/(2+7)
6 =a* =|—— -z =
<2\/K) 2ye

over a range where
2(1 — )

32y 8

X
— 1
2t1 «

According to the results of the hypersonic small-disturb-
ance theory, as was mentioned before, there exists a distinctly
identifiable region next to the surface, where the pressure is
nearly constant across the layer. Since in the present paper
such a region is regarded as the entropy layer, the values of
yr/ys as well as K can be determined from the result of the
hypersonic-small-disturbance theory. With these constants,
we obtain the unknown shock-layer-thickness parameter o
by the use of Eq. (3.5). Once the shock-wave shape is deter-
mined, the pressure pz and the entropy-layer edge yz can
easily be determined. For example the pressure is

Pr_ 8% g z<f)‘2’3
p. = 90y + 1) LM 5 3.6)

We shall next proceed to examine cases when the boundary-
layer-displacement effect is not negligibly small. For these
cases the second term in the square bracket of Eq. (2.20)
becomes, with pg from Eq. (3.3)

0 1/64+2(v—1)/3
sal—M/7 MV I <x> ” i

2t

VRet

where

/v 2~
5 = (‘-1> \/ YK
9 y+1
Therefore, combining Eq. (2.18) with pz/pe from Eq. (3.3)
we obtain the relation similar to Eq. (3.5) as follows:

3 \YO+Y [eys\¥@+m
a={—= 5= 1
<2\/K> (2 w) [ *

sal=1/v MA/C [ \MOTH=D/AYY [ p\2U=/3@+)
‘ Ve \2 5

(3.7

As in the previous case, a is not strongly dependent on x/2t,
so far as the boundary layer is still thin in comparison with
the entropy-layer thickness. Indeed the numerical results
for the case of ¥ = 1.4 show that a of Eq. (38.7) indicates no
appreciable dependence on z/2t over a certain extent which
depends on the values of M V¢ /N Re;and I or T,/ T.

We must here discuss the validity of the condition Eq.
(2.18) which was assumed in the derivation of Eq. (2.20) or
(3.7). The stream function is given from the definition

YE
\I,E = ﬂ Pinv. Wino, dy

where the subscripts tnv. stand for quantities given by the
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inviscid solution. By the use of Eqgs. (3.1) and (3.2a),

Vs = yspotie fo " pr(9)do
= UopulsF(02) =~ AUapuysfe?/(v—1 (3.8)
where
fg = yE/ Ys

Therefore the condition Eq. (2.18) becomes
2/3 /{(y—1)
o(1— -2 Y aa ()" (v=)"
S 8va? 2t Ys

= 3.9)
x\2/3 Yg y/(y—1) (
' 2da <2t> (ys>

For the case of v close to one, (yz/ys)?/ v~V is very small in
comparison with one because yg/ys is smaller than one,
Moreover, as will be shown later, the remaining constant
factor {1 — [9/(8va®]} is found to be smaller than one.
Therefore the above condition may be expected to be suffi-
ciently valid over a certain large extent in terms of z/2t.
This will be checked by means of our numerical results.

IV. Surface Pressure and Surface Heat-Transfer
Rate

In the present analysis the pressure is assumed constant
across the entropy layer, so that the pressure pg at the outer
edge of the entropy layer is taken equal to the surface pressure
pw. From Eq. (3.6) we have

Po _PE _ _ 8Y  pooam (2T
Do Pw Oy + 1) KoM (2'5) (1)

In Section II we saw that the solution for the entropy layer
can be reduced to that of the usual boundary-layer-type prob-
lem when the 7z is relatively large in comparison with one,
say larger than about 4. We then have

fng) =~ 75 — 8

where g = 1.7 for the Blasius-type solution. With this
relation Eq. (2.8a) gives

NEg =~ V Ret/g (1 + \I’E/Pmucct) + B

Since £ and Vg/pou.t are given by Eqs. (2.6a) and (3.8),
respectively, the above relation becomes

1 \/3w+ 1) VRe <g>“1/e «

77 4 YK MA/C\2

4o
2\ (yz 7/(7—1)]
[1 + 24a (ét) (ys> + 8 4.2

In order that the entropy-layer solution be reduced to that

for the usual boundary-layer problem, V. Re,/M VC must
be sufficiently large so that the 7z is relatively large in com-
parison with one over a large extent in terms of x/2t. For
such cases the surface heat-transfer coefficient defined by

Crx = (NOT/0y)u/ potics(H oo — Ho)

is given in quite the same way as in the usual boundary-layer
problem. That is, for the unit Prandtl number!?

MCy = £y OMN/C/N/ Reps/po) ([ vz do/pat) ™"

With p./pe. of Eq. (4.1) we have
0 .1 1/3
m©® [T8yK (gt) 4.3)
x

M¥Cy =~ = —_—
O~ AN+ D
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Y=1.4 Pr=10

1.6
——-- Tw/Te=1.0
_ 0.i5 Re,
™ =20
1.4 =T
a /”// Re,
? cp;l=5° |
.2 f—— =TT T |
/ [¢]
Re, /
CcMt 120
10 50
0 100 200

x/2t

Fig. 2 The ratio of the shock-layer-thickness parameter
a to the reference value a* when the Reynolds number is
very large

where 3 is the hypersonic interaction parameter®

5= MC
\/Rex

V. Numerical Results and Examination of the
Validity of the Analysis

The calculation has been carried out for the case of v = 1.4.
The solution for the inviseid hypersonic flow behind the power-
law shock wave which is given by ys ~ z%3 has been obtained
by Kubota.’ In applying the hypersonic equivalence prin-
ciple, the numerical result of this solution for a steady hyper-
sonic flow reduces to quite the same as that for the con-
stant-energy blast wave, which was investigated by Sedov,®
Sakurai,?* and Lin.?? The results for the case v = 1.4 give

(2/D8)y ys—0 = 0.390

Since the pressure should tend to the surface value p.(=~ pg)
as y/ys — 0, we obtain the constant K and A from Egs.
(3.2b) and (3.2¢). From the numerical result shown in
Ref. 2, there certainly exists an identifiable region next
to the surface, where p/ps indicates no appreciable change.
Actually yz/ys has been chosen as the point where the frac-
tional deviation of the pressure from the surface value is one
percent. We thus obtain

With these values of K and yr/ys above obtained, the
shock-layer-thickness parameter a* has been evaluated by
the use of Eq. (3.5) for the limiting case when Re, is extremely
large so that the boundary-layer displacement effect may be
neglected. Thatis,

a* = 0.878
and then the surface pressure p. is given, from Eq. (4.1), by

2/3
Pe _ 015602 (21)
Pa z

For the case when the boundary-layer displacement effect
is not negligibly small, the shock-layer-thickness parameter
a can be determined from Eq. (3.7). The factor al—"/~
appearing in Eq. (3.7) can be replaced by a*1—7/7 without
any significant error because the exponent is very small in
the order of e. As can be seen from Eq. (2.15), the factor
I appearing in Eq. (8.7) depends on the wall-to-stagnation
temperature ratio. For the Blasius-type solution we have

I =0.664 + 1.73 T,/ T,
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Fig. 3 The value of 7z, the y-coordinate of the entropy
layer edge

The ratios of ¢ to a® have been calculated for typical values

of MA/C/N/Re, and T./T,. InTFig.2is plotted the ratio of
a to a* against x/2t.

We must recall that Eq. (3.7) has been derived on the as-
sumption that a is a very slowly function of z/2f. We can
see from Fig. 2 that this assumption is approximately assured
over a range depending on the values of both the parameters
Re,/M*C and T./To. Indeed the o’s indicate no appreci-
able change over quite a large range in terms of x/2f, for
Re,/M*C > 10 when T,/T, = 0.15 and for Re,/M?*C > 50
when T,/Ty = 1.0. As is also seen from Fig. 2, the shock-
wave shape is relatively insensitive to the variation of Re,/
M2C for a fixed Tw/To. In other words the inviscid region
seems to be not strongly affected due to the boundary-layer
growth within the entropy layer.

We should also recall the assumption that g is relatively
large in comparison with one. In order to estimate the mag-
nitude of ng, Eq. (4.2) can be applied. We then set a on the

right-hand side to one. The values of (nz — B)/ ev4 ﬁet/

M \/ C) thus obtained are plotted against z/2¢ in Fig. 3. We
can see from the result shown in this figure that when Re,;/M2C
for any wall-to-stagnation temperature ratio, nz is so large
that the boundary layer may be imbedded within the en-
tropy layer. The remaining main assumption is the validity
of the condition, Eqgs. (2.18) or (3.9), in which case Eq. (2.16)
may be approximated by Eq. (2.20). This can be checked
by the use of Eq. (3.9). Indeed the neglect of this factor
lead to only a small error, less than a few percent in the
value of @, over the range under consideration.

In Refs. 13 and 14 Cheng et al. presented, based on the
blast-wave analogy, an analysis on the effects of both blunt-
ness and viscosity in a hypersonic flow over blunt-nosed
bodies, and, moreover, compared with the data on surface
heat-transfer rate which were obtained by their Shock-tunnel
experiment. Their theoretical results were also compared
with the data on surface pressure obtained at the same labora-
tory.2? We shall compare our results with both the theo-
retical and experimental results worked out by the group of
Cornell Aeronautical Lab.

The surface pressure and heat-transfer rate were calculated
by the use of Egs. (4.1) and (4.3), respectively, with values
of the shock-layer-thickness parameter ¢ associated closely
with the experimental conditions. In Ref. 23 the surface
pressure was measured over a range where 1 < z/2t < 20, for
the case of v = 1.4, Re;,/M?*C ~ 50, and T,/Ty =~ 0.15. For
this condition the shock-layer-thickness parameter has been
chosen from the results shown in Fig. 2—viz.,

a/a* ~ 1.0 or a =~ 0.878
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Fig. 4 The pressure distribution along the plate surface

By the use of this value of @ the surface pressure has been
evaluated from Eq. (4.1) as

D x —2/38
£~ 0.156M2 (2
0.156M <2t>

=)

This is plotted in Fig. 41 with the results in Refs. 14 and 23.
The corresponding heat-transfer coefficient is thus given
from Eq. (4.3); viz.,

i/
M3Cy ~ 0.076M (

Re.

e AN
2)
In quite a similar way the heat-transfer coefficient of Eq.
(4.3) is determined for two other cases of Re,/ M2*C = 10 and
200y = 14, T.,/Ty =~ 0.15, 5 < z/2t < 100)—viz., for
Re,/M*C =~ 10

a/a* =~ 117 M3*Cy ~ 0.089 =
Re. z

M3\/C (M32t>”3

for Re,/ M*C = 20

a/a* =~ 1.07 M3*Cyr =~ 0.081

M3/ C <M32t>”3
\/Re, x

These calculated values of the heat-transfer coefficient are
plotted in Fig. 5.

For comparison the theoretical results of Ref. 14 are also
plotted in Figs. 4 and 5. The present results for the heat-
transfer coefficient show relatively lower values than either
the experimental data or the results of Ref. 14. As regards
the surface pressure the results of the present analysis agree
satisfactorily with the experimental data (see Fig. 4). As
was mentioned before, some uncertainty in the determination
of the nose-drag coeflicient % is inevitably involved in any
analysis incorporating the blast-wave analogy. As can be

tIn Refs. 14 and 23 the experimental data on the surface
pressure and heat-transfer rate were plotted against M3ek2t/x
and (M 3ek2t/x)V3x with k = 2, respectively, where k is the nose-
drag coefficient. For convenience the same plots are used in
Figs. 4and 5.

gives a lower estimate of the surface heat-transfer coefficient
in comparison with the experimental data. However, for
any choice of the value of k the results could not be made to
fit the experimental data regarding both the surface pressure
and the heat-transfer rate. It is worthwhile noting that the
results of the present analysis, which is not based on the blast-
wave analogy, involve no semi-empirical factor such as k.

In summarizing, the present analysis was based on the follow-
ing flow model: the fluid particles that passed through a strong
portion of the shock wave above the nose shoulder constitute
the entropy-layer edge which divides the flow field behind
the shock wave into the inviscid hypersonic flow region and
entropy layer, and the boundary layer is so thin that it is con-
fined within the entropy layer. If such a flow model is
assumed, the shock wave is found to be of the form

ys/2t = alz/2t)*°

in which a is very slowly varying with z/2¢ so that may be
regarded as a constant over a certain region. Then the in-
viscid hypersonic solution has been shown to be approxi-
mately matched with the entropy-layer solution. The ex-
istence of such a flow model has been justified in a certain
region of z/2¢{ whose extent can be determined from the im-
posed conditions on the validity of the present model when
v, Tw/To and Re,/M?C are given. In conclusion it is hoped
that a simplifying analysis presented here will provide a
clue to make clearer some of the essential features of the
hypersonic flow over a blunt-nosed flat plate.
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Some Applications of Detailed Wind Profile Data
to Launch Vehicle Response Problems

HoMmER G. MoreaN® anp DeNNIs F. Cornrins Jr.*

NASA Langley Research Center, Hampton, Va.

The response of a launch vehicle to a number of detailed wind profiles has been determined.
The wind profiles were measured by two techniques that are described briefly. One of these
techniques uses an angle-of-attack sensor in eonjunction with guidance data to measure the
wind profile traversed by some particular launch vehicle. The other wind-measuring tech-

nique is a photographic triangulation method, whereby two cameras take simultaneous pic-
.

tures of a vertical trail of smoke left by a launch vehicle or sounding rocket. The response of a
vehicle flying these detailed profiles is compared with the response of the same vehicle flying
through balloon-measured profiles. The response to the detailed wind profiles, relative to the
balloon-measured profiles, is characterized by the large excitation of the rigid pitch and elas-
tic bending modes. This is found to cause higher loads on the launch vehicle structure.
Established design criteria that use balloon-measured wind profiles have accounted for this

increased load arbitrarily by adding a load due to some type of discrete gust.

Nomeneclature
M = bending moment, 1b-in.
M yetaitea = bending moment induced by a detailed wind profile,
Ib-in.
Miimis = limit bending moment, lb-in.

M moothea = bending moment induced by a balloon-type wind
profile, Ib-in.

Va = relative airstream velocity, fps

Vi = inertial velocity, fps

Ve = wind velocity, fps

y = translation normal to a reference trajectory, in.
a = angle of attack, rad

Presented at the ARS Launch Vehicles: Structures and Ma-
terials Conference, Phoenix, Ariz., April 3-5, 1962; revision
received November 1, 1962.

* Aerospace Technologist.

flight-path angle, rad
attitude angle, rad
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Introduction

HE wind and gust criteria for determining design loads on

launch vehicles and the analytical methods by which these
criteria are applied reflect the characteristics of available wind
and gust data. The wind data have been obtained primarily
from balloon soundings that detect only the gross motion of
the atmosphere and filter out the small-scale fluctuations as
indicated in Fig. 1. Examples of design criteria based on
such wind data are the synthetic wind profiles of Refs. 1-4
and the measured profiles in Refs. 3 and 5. Most of the gust
data that have been available were for vertical gusts (or
turbulence) measured by a horizontally flying airplane,®— also



